
Introduction à la programmation orientée

objet

Comment créer ses propres structures en Python ?

Division des enseignements en informatique

La POO : kézako ?

Qu’est-ce que c’est ?

La programmation orientée objet consiste en la définition et

l’interaction de briques logicielles appelées objets ; un objet

représente un concept, une idée ou toute entité du monde

physique, comme une voiture, une personne ou encore une page

d’un livre. Il possède une structure interne et un comportement, et

il sait interagir avec ses pairs. Il s’agit donc de représenter ces

objets et leurs relations ; l’interaction entre les objets via leurs

relations permet de concevoir et réaliser les fonctionnalités

attendues, de mieux résoudre le ou les problèmes.

Wikipédia

La POO : kézako ? 2

Pour quoi faire ?

Qu’est-ce qu’un rectangle ?

• Objet dans l’espace

• Possède 4 sommets

• Chaque sommet a ses propres

coordonnées X, Y, Z

• Possède 4 côtés

• Côtés sont 2 à 2 égaux

• Côtés perpendiculaires

La POO : kézako ? 3

Pour quoi faire ?

Qu’est-ce qu’un rectangle ?

• Objet dans l’espace

• Possède 4 sommets

• Chaque sommet a ses propres

coordonnées X, Y, Z

• Possède 4 côtés

• Côtés sont 2 à 2 égaux

• Côtés perpendiculaires

La POO : kézako ? 3

La POO c’est pas si nouveau

Quand on ajoute des éléments à une liste :

>>> l.append("element")

Quand on compte le nombre d’éléments (e.g. “a”) dans une

châıne de caractères :

>>> s.count(a)

Quand on ouvre un fichier :

>>> fichier = open("fichier.txt","r")

La POO : kézako ? 4

Principes de la POO

Il y a 4 principes fondamentaux dans la POO :

• Héritage

• Polymorphisme

• Encapsulation

• Abstraction

Ils reposent tous sur la notion de classe.

La POO : kézako ? 5

Notions de classe

Déclaration d’une classe

• Utilisation du mot-clé ‘class‘

class MaClasse(object):

...

...

• Convention :

• 1ère lettre des mots en majuscule

• pas d’espace, tiret, underscore...

• MonNomDeClasse

Notions de classe 6

Instanciation d’un objet

L’objet créé est une instance de classe.

On en crée autant que l’on veut.

>>> mon_objet1 = MaClasse ()

>>> mon_objet2 = MaClasse ()

>>> mon_objet3 = MaClasse ()

>>> print(mon_objet1 is mon_objet2)

False

Notions de classe 7

Les méthodes

Une méthode est une fonction définie à l’intérieur d’une classe.

Pour l’utiliser on fait précéder le nom de la méthode du nom

de l’objet.

>>> class MaClasse(object):

def une_methode(param):

print("Une mé thode qui fait quelque

chose")

>>> mon_objet = MaClasse ()

>>> mon_objet.une_methode ()

Une mé thode qui fait quelque chose

Notions de classe 8

Les méthodes

Instance appelant la méthode = 1er paramètre de la méthode

• nommé self par convention

• spécificité de Python

>>> class MaClasse(object):

def une_methode(self):

print(self)

>>> mon_objet = MaClasse ()

>>> print(mon_objet)

<__main__.DescriptionDeLObjet object at 0

x059F0190 >

>>> mon_objet.une_methode ()

<__main__.DescriptionDeLObjet object at 0

x059F0190 >

Notions de classe 9

Les attributs

Un attribut est une variable définie à l’intérieur d’une classe. Pour

y accéder :

• on fait précéder le nom de l’attribut du nom de l’instance

• ou de self si on est dans la classe

>>> class MaClasse(object):

def afficher(self):

print(self.un_attribut)

>>> mon_objet = MaClasse ()

>>> mon_objet.un_attribut = 42

>>> mon_objet.afficher ()

42

>>> un_attribut # n’exsite pas en dehors de la

classe

NameError: name ’un_attribut ’ is not defined

Notions de classe 10

Le constructeur

• C’est une méthode appelée lors de la création d’objets.

• Elle permet d’initialiser les valeurs des attributs.

• Nommé init .

>>> class MaClasse(object):

def __init__(self):

self.un_attribut = "valeur initiale"

print("Objet cr é é. Attributs

initialis és.")

>>> mon_objet = MaClasse ()

Objet cr é é. Attributs initialis és.

>>> mon_objet.un_attribut

"valeur initiale"

Notions de classe 11

Le constructeur

Possibilité de passer des paramètres pour personnaliser les objets.

>>> class MaClasse(object):

def __init__(self , valeur):

self.un_attribut = valeur

>>> mon_objet = MaClasse("valeur personnalis ée")

>>> mon_objet.un_attribut

"valeur personnalis ée"

Notions de classe 12

Le constructeur

Le constructeur peut aussi avoir des valeurs par défaut.

>>> class MaClasse(object):

def __init__(self , valeur="valeur par dé

faut"):

self.un_attribut = valeur

>>> mon_objet1 = MaClasse ()

>>> mon_objet1.un_attribut

"valeur par défaut"

>>> mon_objet2 = MaClasse("valeur personnalis ée")

>>> mon_objet2.un_attribut

"valeur personnalis ée"

Notions de classe 13

Méthodes spéciales

Nous appelerons méthode spéciale une méthode exécutée sans

qu’on ai besoin de l’appeler explicitement.

• init () en est une.

• Leur nom commence et termine par .

• Utile pour personnaliser le comportement d’un objet.

Notions de classe 14

Méthodes spéciales

>>> class MaClasse(object):

def __init__(self , valeur):

self.un_attribut = valeur

>>> mon_objet = MaClasse("17")

>>> print(mon_objet)

<__main__.MaClasse object at 0x051D5DF0 >

Notions de classe 15

Méthodes spéciales

>>> class MaClasse(object):

def __init__(self , valeur):

self.un_attribut = valeur

def __str__(self):

print("Instance de MaClasse (

valeur de un_attribut = {})".

format(self.un_attribut)

>>> mon_objet = MaClasse("17")

>>> print(mon_objet)

Instance de MaClasse (valeur de un_attribut = 17)

Notions de classe 15

Méthodes spéciales

Quelques méthodes spéciales :

• str () : appelée suite à un : print(objet).

• add () : pour pouvoir écrire : objet1 + objet2.

• eq () : permet de comparer deux objets : objet1 ==

objet2.

• ne () : permet de tester si deux objets sont différents :

objet1 != objet2.

• len () : pour pouvoir calculer la longueur d’un objet :

len(objet).

Notions de classe 16

L’héritage

L’héritage

E = mc 2

L’héritage 17

L’héritage

E = mc 2

L’héritage 17

L’héritage

E = mc 2

L’héritage 17

L’héritage

• Principe permettant de créer une classe à partir d’une autre.

• Nom de la classe mère entre paranthèses lors de la définition.

• Méthodes et attributs de la classe mère transmis à la classe

fille.

class ClasseMere(object):

...

...

class ClasseFille(ClasseMere):

...

...

Remarque : toutes les classes héritent d’une classe object.

L’héritage 18

L’héritage

>>> class ClasseMere(object):

def une_methode(self):

print("Je suis dans la classe mère")

>>> class ClasseFille(ClasseMere):

pass

>>> ClasseFille ().une_methode ()

Je suis dans la classe mère

L’héritage 19

L’héritage

Un objet de la classe fille peut appeler une méthode ou un attribut

de la classe mère :

>>> class Article(object):

def __init__(self , prix):

self.prix = prix

>>> class ArticleEnPromotion(Article):

def __init__(self , prix , rabais):

Article.__init__(self , prix)

self.prix *= (1 - rabais / 100) #

Appelle l’attribut prix défini

dans la classe mère

>>> Article (10).prix

10

>>> ArticleEnPromotion (10, 20).prix

8

L’héritage 20

Le polymorphisme

Le polymorphisme

Principe permettant de donner plusieurs définitions à une méthode.

En programmation orientée objet, cela se traduit par :

• la possibilité de redéfinir une méthode d’une classe mère dans

une classe fille

• le fait que Python se charge de trouver la bonne méthode à

utiliser

Le polymorphisme 21

Le polymorphisme

>>> class ClasseMere(object):

def une_methode(self):

print("Je suis dans la classe mère")

>>> class ClasseFille(ClasseMere):

def une_methode(self):

print("Je suis dans la classe fille")

>>> ClasseMere ().une_methode ()

Je suis dans la classe mère

>>> ClasseFille ().une_methode ()

Je suis dans la classe fille

Le polymorphisme 22

L’encapsulation

L’encapsulation

Principe visant à cacher les détails de l’implémentation à

l’utilisateur : les attributs de chaque classe doivent être

privés, c’est-à-dire inaccessibles en dehors de la classe.

En Python cette notion n’existe pas : tout est public. Par

convention on ajoutera un “ ” avant chaque attribut pour faire

comme s’il était privé.

L’encapsulation 23

L’encapsulation

>>> class MaClasse(object):

def __init__(self , valeur1 , valeur2):

self.attribut_public = valeur1

self._attribut_prive = valeur2

L’encapsulation 24

Lecture/écriture d’attributs

Comment lire/écrire les valeurs des attributs privés ?

On utilise des méthodes spécifiques. On les appellent des

getter (pour lire une valeur) et des setter (pour changer une

valeur).

L’encapsulation 25

Lecture/écriture d’attributs

>>> class Rectangle(object):

def __init__(self , longueur , largeur):

self._longueur = longueur

self._largeur = largeur

def get_longueur(self):

return self._longueur

def set_longueur(self , valeur):

self._longueur = valeur

>>> rect = Rectangle (5, 4)

>>> rect.set_longueur (8)

>>> rect.get_longueur ()

8

L’encapsulation 26

L’abstraction

Idée générale

Ce que veut l’utilisateur :

• Appuyer sur un bouton

• Mettre de l’argent

• Récupérer son soda/snack

Ce que l’utilisateur ne voit pas :

• Interprétation de la commande

• Vérification du paiement

• Donner le soda/snack

L’abstraction 27

Idée générale

Ce que veut l’utilisateur :

• Appuyer sur un bouton

• Mettre de l’argent

• Récupérer son soda/snack

Ce que l’utilisateur ne voit pas :

• Interprétation de la commande

• Vérification du paiement

• Donner le soda/snack

L’abstraction 27

Idée générale

Ce que veut l’utilisateur :

• Appuyer sur un bouton

• Mettre de l’argent

• Récupérer son soda/snack

Ce que l’utilisateur ne voit pas :

• Interprétation de la commande

• Vérification du paiement

• Donner le soda/snack

L’abstraction 27

Les classes abstraites

Une classe abstraite est une classe qui ne peut être instanciée.

C’est une notion qui est difficile à mettre en œuvre en Python.

Remarque : on peut lever une exception dans le constructeur.

L’abstraction 28

Les classes abstraites

class MaClasseAbstraite(object):

def __init__(self , param1 , param2 ...):

raise NotImplementedError

def methode1(self , param ...):

methode1 est une mé thode abstraite

raise NotImplementedError

def methode2(self , param ...):

methode2 est une mé thode concr ète : on

l’impl é mente ici

L’abstraction 29

Différences abstraction/encapsulation

Quelles sont les différences entre abstraction et encapsulation ?

Figure 1: Abstraction Figure 2: Encapsulation

L’abstraction 30

Différences abstraction/encapsulation

Quelles sont les différences entre abstraction et encapsulation ?

Figure 1: Abstraction Figure 2: Encapsulation

L’abstraction 30

Différences abstraction/encapsulation

Abstraction Encapsulation

• Généralisation • Structuration

• Cache les données / struc-

tures pour mettre en avant les

idées

• Cache les détails de

l’implémentation

• Se concentrer sur ce que fait

un objet et pas sur comment il

le fait

• cache les détails /

méchanismes utilisés par

l’objet

• Design • Implémentation

L’abstraction 31

	La POO : kézako ?
	Notions de classe
	L'héritage
	Le polymorphisme
	L'encapsulation
	L'abstraction

