Introduction a la programmation orientée
objet

Comment créer ses propres structures en Python ?

Division des enseignements en informatique



La POO : kézako ?



Qu’est-ce que c’est ?

La programmation orientée objet consiste en la définition et
I'interaction de briques logicielles appelées objets ; un objet
représente un concept, une idée ou toute entité du monde
physique, comme une voiture, une personne ou encore une page
d’un livre. Il posséde une structure interne et un comportement, et
il sait interagir avec ses pairs. Il s’agit donc de représenter ces
objets et leurs relations ; I'interaction entre les objets via leurs
relations permet de concevoir et réaliser les fonctionnalités
attendues, de mieux résoudre le ou les problemes.

Wikipédia

IGN
s ej La POO : kézako 7 2



Pour quoi faire ?

Qu'est-ce qu'un rectangle 7

IGN
s ej La POO : kézako 7 3



Pour quoi faire ?

Qu'est-ce qu'un rectangle 7

e Objet dans I'espace

Possede 4 sommets

Chaque sommet a ses propres
coordonnées X, Y, Z

Possede 4 cotés

e (COtés sont 2 a 2 égaux

Cotés perpendiculaires

IGN
s ej La POO : kézako 7 3



La POO c’est pas si nouveau

Quand on ajoute des éléments a une liste :

>>> 1.append("element")

Quand on compte le nombre d'éléments (e.g. “a") dans une

chatne de caracteres :

>>> s.count (a)

Quand on ouvre un fichier :

>>> fichier = open("fichier.txt","r")

IGN
e ej La POO : kézako ? 4



Principes de la POO

Il'y a 4 principes fondamentaux dans la POO :

e Héritage
e Polymorphisme
e Encapsulation

e Abstraction

Ils reposent tous sur la notion de classe.

IGN @
B La POO : kézako 7 5



Notions de classe



Déclaration d’une classe

e Utilisation du mot-clé ‘class’

class MaClasse(object):

e Convention :

e lére lettre des mots en majuscule
e pas d'espace, tiret, underscore...
e MonNomDeClasse

IGN qu
e Notions de classe 6



Instanciation d’un objet

L'objet créé est une instance de classe.

On en crée autant que I'on veut.

>>> mon_objetl = MaClasse ()
>>> mon_objet2 = MaClasse ()
>>> mon_objet3 MaClasse ()

>>> print(mon_objetl is mon_objet2)
False

IGN qz]
e Notions de classe 7



Les méthodes

Une méthode est une fonction définie a I'intérieur d'une classe.

Pour I'utiliser on fait précéder le nom de la méthode du nom
de I'objet.

>>> class MaClasse (object):
def une_methode (param) :
print ("Une méthode qui fait quelque
chose")

>>> mon_objet = MaClasse ()

>>> mon_objet.une_methode ()
Une méthode qui fait quelque chose

IGN ej
e Notions de classe 8



Les méthodes

Instance appelant la méthode = ler parametre de la méthode

e nommé self par convention
e spécificité de Python
>>> class MaClasse(object):

def une_methode (self):
print (self)

>>> mon_objet = MaClasse ()

>>> print(mon_objet)

<__main__.DescriptionDelLObjet object at O
x059F0190>

>>> mon_objet.une_methode ()

__.DescriptionDelLObjet object at O

x059F0190>

IGN qz)
e Notions de classe 9

<__main



Les attributs

Un attribut est une variable définie a I'intérieur d'une classe. Pour

y accéder :

e on fait précéder le nom de I'attribut du nom de I'instance
e ou de self si on est dans la classe

>>> class MaClasse(object):
def afficher(self):
print (self.un_attribut)

>>> mon_objet = MaClasse ()

>>> mon_objet.un_attribut = 42

>>> mon_objet.afficher ()

42

>>> un_attribut # n’exsite pas en dehors de 1la

classe
IGN NameError: name ’un_attribut’ is not defined

Notions de classe 10



Le constructeur

e C'est une méthode appelée lors de la création d'objets.
e Elle permet d’initialiser les valeurs des attributs.

e Nommé __init__.

>>> class MaClasse(object):
def __init__(self):
self .un_attribut = "valeur initiale"
print ("Objet créé. Attributs

initialisés.")

>>> mon_objet = MaClasse ()
Objet créé. Attributs initialisés.
>>> mon_objet.un_attribut

"valeur initiale"

IGN ej
e Notions de classe 11



Le constructeur

Possibilité de passer des paramétres pour personnaliser les objets.

>>> class MaClasse (object):
def __init__(self, valeur):

self .un_attribut = valeur
>>> mon_objet = MaClasse("valeur personnalisée")

>>> mon_objet.un_attribut

"valeur personnalisée"

IGN ej
e Notions de classe 12



Le constructeur

Le constructeur peut aussi avoir des valeurs par défaut.

>>> class MaClasse(object):

def __init__(self, valeur="valeur par dé
faut"):
self .un_attribut = valeur
>>> mon_objetl = MaClasse ()

>>> mon_objetl.un_attribut
"valeur par défaut"

>>> mon_objet2 = MaClasse("valeur personnalisée")

>>> mon_objet2.un_attribut

"valeur personnalisée"

IGN qz)
e Notions de classe 13



Méthodes spéciales

Nous appelerons méthode spéciale une méthode exécutée sans
qu'on ai besoin de I'appeler explicitement.

e __init__() en est une.
e |eur nom commence et termine par __.

e Utile pour personnaliser le comportement d'un objet.

IGN ej
e Notions de classe 14



Méthodes spéciales

>>> class MaClasse (object):
def __init__(self, valeur):

self .un_attribut = valeur
>>> mon_objet = MaClasse("17")

>>> print(mon_objet)
<__main__.MaClasse object at 0x051D5DFO>

IGN @
e Notions de classe 15



Méthodes spéciales

>>> class MaClasse (object):
def __init__(self, valeur):
self .un_attribut = valeur
def __str__(self):
print ("Instance de MaClasse (
valeur de un_attribut = {})".

format (self.un_attribut)
>>> mon_objet = MaClasse("17")

>>> print(mon_objet)
Instance de MaClasse (valeur de un_attribut = 17)

IGN qz)
e Notions de classe 15



Méthodes spéciales

Quelques méthodes spéciales :

e _str__() : appelée suite a un : print(objet).
e __add__() : pour pouvoir écrire : objetl + objet2.

e _eq__() : permet de comparer deux objets : objetl ==
objet2.

e _ne () : permet de tester si deux objets sont différents :
objetl != objet2.

e _len_ () : pour pouvoir calculer la longueur d'un objet :
len(objet).

IGN ej
e Notions de classe 16



L’héritage




II;'
i

I
l

|

o @

L'héritage

17



II;'
i

I
l

|

ICN @,

L'héritage

17



o @
e = L'héritage 17



L héritage

e Principe permettant de créer une classe a partir d'une autre.
e Nom de la classe mere entre parantheéses lors de la définition.

e Méthodes et attributs de la classe mere transmis a la classe
fille.

class ClasseMere(object):

class ClasseFille(ClasseMere):

Remarque : toutes les classes héritent d'une classe object.

o @,

L'héritage 18



L héritage

>>> class ClasseMere(object):
def une_methode (self):

print ("Je suis dans la classe mére")

>>> class ClasseFille(ClasseMere):

pass

>>> ClasseFille () .une_methode ()

Je suis dans la classe mére

o @
G L'héritage 19



L héritage

Un objet de la classe fille peut appeler une méthode ou un attribut
de la classe mere :

>>> class Article(object):
def __init__(self, prix):

self.prix = prix

>>> class ArticleEnPromotion(Article):
def init__(self, prix, rabais):

Article.__init__(self, prix)
self .prix *= (1 - rabais / 100) #
Appelle 1’attribut prix défini

dans la classe meére

>>> Article (10) .prix
10
>>> ArticleEnPromotion (10, 20).prix

g,
s L'héritage 20



Le polymorphisme




Le polymorphisme

Principe permettant de donner plusieurs définitions a une méthode.

En programmation orientée objet, cela se traduit par :

e |a possibilité de redéfinir une méthode d'une classe mere dans
une classe fille

e le fait que Python se charge de trouver la bonne méthode a
utiliser

o @
st Le polymorphisme 21



Le polymorphisme

>>> class ClasselMere (object):
def une_methode (self):

print ("Je suis dans la classe mére")

>>> class ClasseFille(ClasseMere):
def une_methode (self):

print ("Je suis dans la classe fille")

>>> ClasseMere () .une_methode ()
Je suis dans la classe meére
>>> ClasseFille () .une_methode ()

Je suis dans la classe fille

o @
st Le polymorphisme 22



L’encapsulation




L’encapsulation

Principe visant a cacher les détails de I'implémentation a
I'utilisateur : les attributs de chaque classe doivent étre
privés, c'est-a-dire inaccessibles en dehors de la classe.

En Python cette notion n’existe pas : tout est public. Par

convention on ajoutera un “ _" avant chaque attribut pour faire

comme s'il était privé.

o @
st L’encapsulation 23



L’encapsulation

>>> class MaClasse(object):
def __init__(self, valeurl, valeur2):

self.attribut_public = valeurl

self._attribut_prive = valeur2

o @

L’encapsulation 24



Lecture/écriture d’attributs

Comment lire/écrire les valeurs des attributs privés ?

On utilise des méthodes spécifiques. On les appellent des
getter (pour lire une valeur) et des setter (pour changer une

valeur).

o @
G L’encapsulation 25



Lecture/écriture d’attributs

>>> class Rectangle(object):

def __init__(self, longueur, largeur):
self._longueur = longueur
self._largeur = largeur

def get_longueur (self):
return self._longueur

def set_longueur (self, valeur):

self._longueur = valeur

>>> rect = Rectangle(5, 4)
>>> rect.set_longueur (8)

>>> rect.get_longueur ()
8

o @
st L’encapsulation 26



L’abstraction




Idée générale

~ L’'abstraction 27



Idée générale

Ce que veut I'utilisateur :
e Appuyer sur un bouton
e Mettre de I'argent

e Récupérer son soda/snack

~= L’'abstraction 27



Idée générale

Ce que veut I'utilisateur :
e Appuyer sur un bouton
e Mettre de I'argent
e Récupérer son soda/snack
Ce que l'utilisateur ne voit pas :
e Interprétation de la commande

e Vérification du paiement

e Donner le soda/snack

~= L’'abstraction 27



Les classes abstraites

Une classe abstraite est une classe qui ne peut étre instanciée.
C'est une notion qui est difficile 3 mettre en ceuvre en Python.

Remarque : on peut lever une exception dans le constructeur.

IGN @
&R L'abstraction 28



Les classes abstraites

class MaClasseAbstraite (object):
def __init__(self, paraml, param2...):

raise NotImplementedError

def methodel (self, param...):
# methodel est une méthode abstraite

raise NotImplementedError
def methode2(self, param...):

# methode2 est une méthode concréte : on

1’implémente ici

IGN qu
L'abstraction 29



Différences abstraction/encapsulation

Quelles sont les différences entre abstraction et encapsulation ?

IGN @
e L'abstraction 30



Différences abstraction/encapsulation

Quelles sont les différences entre abstraction et encapsulation ?

Figure 1: Abstraction Figure 2: Encapsulation

IGN a
oz = L'abstraction 30



Différences abstraction/encapsulation

Abstraction Encapsulation

e Généralisation e Structuration

e Cache les données / struc- e Cache les détails de
tures pour mettre en avant les | I'implémentation
idées

e Se concentrer sur ce que fait | e cache les détails /

un objet et pas sur comment il | méchanismes utilisés par
le fait I'objet
e Design e Implémentation

IGN ej
e L'abstraction 31



	La POO : kézako ?
	Notions de classe
	L'héritage
	Le polymorphisme
	L'encapsulation
	L'abstraction

